Preparation of mono- and bis-(hydrazine) complexes of ruthenium(II)†

Gabriele Albertin,**.a Stefano Antoniutti,* Alessia Bacchi,* Emilio Bordignon,* Piero Matteo Dolcetti* and Giancarlo Pelizzi*

^a Dipartimento di Chimica, Università di Venezia, Dorsoduro 2137, 30123 Venezia, Italy ^b Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Centro CNR di Strutturistica Diffrattometrica, Università di Parma, Viale delle Scienze, 43100 Parma, Italy

Hydrazine complexes $[RuH(R^1NHNH_2)L_4]BPh_4 1-3$, $[Ru(R^1NHNH_2)_2L_4][BPh_4]$, 4-6 $[R^1 = H, Me, Ph, 4-MeC_6H_4]$ or 4-O₂NC₆H₄; L = P(OEt)₃, PPh(OEt)₂ or P(OMe)₃] were prepared by allowing the hydride species [RuH₂L₄] to react, first with triflic acid (CF₃SO₃H) and then with an excess of the appropriate hydrazine. The derivatives $CONHNH_2L_4[BPh_4]$, 7,8 [L = P(OEt)₃ or PPh(OEt)₂] were also obtained. The formulation and geometry in solution of the compounds were established by infrared and ¹H and ³¹P NMR spectroscopy. The reaction of the bis(nitrile) complexes $[Ru(R^2CN)_2L_4][BPh_4]$, $[R^2 = Me \text{ or } MeC_6H_4]$; $L = P(OEt)_3$ or $PPh(OEt)_2$] with hydrazines depends not only on the experimental conditions, but also on the nature of the phosphite and the hydrazine used. Thus, nitrilehydrazine $[Ru(R^1NHNH_2)(R^2CN)L_4][BPh_4]_2$ 10–13 $[L = P(OEt)_3 \text{ or } PPh(OEt)_2]$ or amidrazone derivatives $[Ru\{\eta^2-NH=C(R^2)N(R^1)NH_2\}\{P(OEt)_3\}_4[BPh_4]$, 14,15 (R¹ = H or Me) were obtained together with the bis(hydrazine) compounds [Ru(R¹NHNH₂)₂L₄][BPh₄]₂. Reaction of the arylhydrazine complexes 1–6 and 10–13 with Pb(O₂CMe)₄ at -30 °C in CH₂Cl₂ resulted in selective oxidation of the arylhydrazine ligand giving the aryldiazene derivatives $[RuH(R^1N=NH)L_4]BPh_4$, $[Ru(R^1N=NH)_2L_4][BPh_4]_2$ and $[Ru(R^1N=NH)(R^2CN)L_4]_3$ [BPh₄]₂ (R¹ = Ph, 4-MeC₆H₄ or 4-O₂NC₆H₄). Treatment of hydrazine NH₂NH₂ and methylhydrazine MeNHNH₂ complexes 1–6 with Pb(O₂CMe)₄, instead, afforded the acetate [Ru(η^2 -O₂CMe)L₄]BPh₄ derivatives which were characterised by a crystal structure determination of [Ru(η²-O₂CMe){P(OEt)₃}₄]BPh₄. The co-ordination of ruthenium is distorted octahedral with approximate $C2_v$ symmetry and the acetate is bidentate.

Transition-metal complexes containing aryldiazenido, aryldiazene or hydrazine ligands are currently of interest as possible intermediates in the chemistry of co-ordinated dinitrogen and its reduction to NH₃ catalysed by nitrogenases. Although a number of studies on the chemistry of 'diazo' derivatives have been reported over the past 25 years, relatively few are concerned with hydrazine complexes and therefore several aspects of the co-ordination chemistry of NH₂NH₂ and substituted hydrazines still remain unclear. Among them we can cite the influence that the central metal and the ancillary ligand may have in determining the co-ordination mode, *i.e.* η^1 , η^2 , μ , *etc.*, of the hydrazine ligand and in which way the co-ordination to a metal fragment may change the properties of the NH₂NH₂ or RNHNH₂ molecule towards reduction, oxidation and deprotonation reactions.

We are interested in the chemistry of partially reduced dinitrogen ligands and have previously reported the synthesis and the reactivity of some aryldiazenido and aryldiazene complexes of transition metals stabilised by phosphite ligands. Now we have extended these studies to include hydrazine and substituted hydrazines as ligands and in this report we describe the synthesis, characterisation and some reactivity studies on hydrazine derivatives of ruthenium(II).

Mono- and di-nuclear hydrazine complexes of ruthenium(II) are known and often contain a 'diene' ³ or a polydentate NS_{4} -, OS_{4} - or OS_{5} -type group ⁴ as an ancillary ligand. With phosphine or phosphite the reported compounds are very few and, apart from the $[RuX_2(RNHNH_2)L_3]$, $[\{RuX_2(N_2H_4)L_2\}_2]$ (X = Cl or Br; R = H or Ph; L = tertiary phosphine) and $[Ru(NH_2-1)]$

NHMe)₂{PPh(OMe)₂}₄][PF₆]₂ derivatives,^{3b,5} only recently the phosphine complexes [{RuCl[P(OMe)₃]₂}₂(μ -Cl)(μ -NH₂NH₂)-(μ -S)]⁶ and [RuX(CO)₂(NH₂NH₂)(PPh₃)₂]⁷ (X = Cl or Br) have been prepared and fully characterised. It is therefore of interest to report the synthesis of new hydrazine complexes of ruthenium(II) together with some new properties shown by this class of compounds.

Experimental

All synthetic work was carried out under an inert atmosphere using standard Schlenk techniques or a Vacuum Atmospheres dry-box. Once isolated, the complexes were relatively stable in air, but were stored under an inert atmosphere -25 °C. All solvents were dried over appropriate drying agents, degassed on a vacuum line and distilled into vacuum-tight storage flasks. The phosphites P(OMe), and P(OEt), (Aldrich) were purified by distillation under nitrogen, while PPh(OEt)2 was prepared by the method of Rabinowitz and Pellon.8 The hydrazines MeNHNH₂, PhNHNH₂, 4-O₂NC₆H₄NHNH₂, PhCONHNH₂ and Me2NNH2 were Aldrich products used as received. The p-tolylhydrazine 4-MeC₆H₄NHNH₂ was prepared by treating under nitrogen the corresponding salt 4-MeC₆H₄NHNH₃+Cl⁻ with a slight excess of NaOH in aqueous solution. A solid separated which, after 15 min of stirring, was filtered off, washed with water and dried over P₂O₅ under vacuum for 24 h. It was stored under nitrogen at -25 °C. Hydrazine NH₂NH₂ was prepared by decomposition of hydrazine cyanurate (NH2NH2· C₃H₃N₃O₃) (Fluka) following the reported method.⁹ Other reagents from commercial sources were of the highest available purity and used as received. Infrared spectra were recorded on a Nicolet Magna 750 Fourier-transform spectrophotometer, NMR spectra (¹H, ¹³C, ³¹P) on a Bruker AC200 spectrometer at temperatures between -90 and +30 °C, unless otherwise noted.

[†] Supplementary data available (No. SUP 57295, 3 pp.): physical and spectroscopic characterisation data. See *J. Chem. Soc.*, *Dalton Trans.*, 1997, Issue 1.

The SWANMR software package has been used in treating the NMR data. Proton and C spectra are referred to internal tetramethylsilane, P-{LH} chemical shifts with respect to 85% H₃PO₄, downfield shifts being considered positive. The conductivities of 10⁻³ mol dm⁻³ solutions of the complexes in MeNO₂ at 25 °C were measured with a Radiometer CDM 83 instrument. Physical constants and elemental analyses for all the complexes and spectroscopic data for the triflate, dinitrile and aryldiazene complexes are available as SUP 57295.

Synthesis of the complexes

The hydride species $[RuH_2L_4]$ $[L = P(OMe)_3, P(OEt)_3$ or PPh- $(OEt)_2]$ were prepared following previous methods.¹¹

[Ru(η²-O₂SOCF₃){P(OEt)₃}₄]BPh₄. To a solution of [RuH₂{P(OEt)₃}₄] (0.26 mmol, 2 g) in toluene (10 cm³) cooled to -78 °C was added an equivalent amount of CF₃SO₃H (0.26 mmol, 23 μl) and the mixture brought to 0 °C and stirred for 1 h. The solution was cooled again to -78 °C and another equivalent of CF₃SO₃H (0.26 mmol, 23 μl) added. After room temperature was reached the reaction mixture was stirred for 2 h and then evaporated to dryness. The oil obtained was treated with ethanol (5 cm³) giving a pale yellow solution to which an excess of NaBPh₄ (1 mmol, 0.34 g) in ethanol (2 cm³) was added. A white solid slowly separated which was filtered off and crystallised from CH₂Cl₂ (2 cm³) and ethanol (5 cm³); yield ≥90%.

[RuH(η¹-OSO₂CF₃){P(OEt)₃}₄]. An equimolar amount of triflic acid (CF₃SO₃H) (0.26 mmol, 23 μl) was added to a solution of [RuH₂{P(OEt)₃}₄] (0.26 mmol, 0.20 g) in ethanol (6 cm³) cooled to -78 °C. The reaction mixture was brought to 0 °C, stirred for 2 h and then the solvent removed under reduced pressure. The oil obtained was treated with light petroleum (b.p. 40–60 °C) (3 × 3 cm³), filtered and the resulting solution evaporated to dryness leaving an oily product. We were not able to crystallise this oil, but the IR and NMR spectra indicate the presence of only one, pure compound and confirm the proposed formulation.

[Ru(4-MeC₆H₄CN)₂L₄][BPh₄]₂ and [Ru(MeCN)₂L₄][BPh₄]₂ [L = P(OEt)₃ or PPh(OEt)₂]. To a solution of the appropriate hydride [RuH₂L₄] (0.5 mmol) in toluene (10 cm³) cooled to −78 °C were sequentially added first one and then a second equivalent of CF₃SO₃H in order to generate in solution the [Ru(η^2 -O₂SOCF₃)L₄]⁺ cation, as previously described. An excess of the appropriate nitrile (2 mmol) was added to the resulting solution, which was stirred for 4 h and then evaporated to dryness. The oil obtained was treated with ethanol containing an excess of NaBPh₄ (2 mmol, 0.68 g) and the resulting solution stirred until a white solid separated, which was filtered off and crystallised from CH₂Cl₂ (3 cm³) and ethanol (8 cm³); yield ≥80%.

[RuH(RNHNH₂)L₄]BPh₄ [L = P(OEt)₃ 1, PPh(OEt)₂ 2 or P(OMe)₃ 3; R = H a, Me b, Ph c, 4-MeC₆H₄ d or 4-O₂NC₆H₄ e]. An equimolar amount of CF₃SO₃H (0.26 mmol, 23 μ l) was added to a solution of the appropriate hydride [RuH₂L₄] in ethanol (or methanol) (6 cm³) cooled to -78 °C and the reaction mixture brought to 0 °C and stirred for 1 h. An excess of the appropriate hydrazine (0.5 mmol) was added to the resulting solution, which was stirred at room temperature for a period varying between 3 h, in the case of NH₂NH₂, and 5 h, in the case of the arylhydrazines. The addition of an excess of NaBPh₄ (1.1 mmol, 0.376 g) caused the precipitation of a white solid which was filtered off and crystallised from CH₂Cl₂ (3 cm³) and ethanol (7 cm³); yield from 50 to 80%.

[RuH(Me₂NNH₂){P(OEt)₃}₄]BPh₄ 1f. This complex was prepared like 1–3 using a reaction time of 9 h; yield ≥70%.

[Ru(RNHNH₂)₂L₄][BPh₄]₂ [L = P(OEt)₃ 4, PPh(OEt)₂ 5 or P(OMe)₃ 6; R = H a, Me b or Ph c]. A solution of the appropriate hydride [RuH₂L₄] (0.65 mmol) in toluene (10 cm³) was treated sequentially with 2 equivalents of CF_3SO_3H (0.65 mmol, 58 µl) in order to prepare a suspension of the triflate cation [Ru- $(\eta^2-O_2SOCF_3)L_4$]⁺. An excess of the appropriate hydrazine (3 mmol) was added and the mixture was stirred for 3 h and then evaporated to dryness. The oil obtained was treated with ethanol (or methanol) (2 cm³) and an excess of NaBPh₄ (2.6 mmol, 0.89 g) in alcohol (3 cm³) was added to the resulting solution, giving a white solid which was filtered off and crystallised from CH_2Cl_2 (2 cm³) and ethanol (or methanol) (5 cm³); yield ≥80%.

[Ru(η²-PhCONHNH₂)L₄][BPh₄]₂ [L = P(OEt)₃ 7 or PPh-(OEt)₂ 8]. These complexes were prepared following the method reported above for the bis(hydrazine) derivatives 4–6. In this case, an excess of solid benzoylhydrazine (1 mmol, 0.136 g) was added to a freshly prepared suspension of [Ru(η²-O₂-SOCF₃)L₄]¹ (0.26 mmol) in toluene (10 cm³) and the reaction mixture, after the addition of CH₂Cl₂ (10 cm³), stirred for 24 h. After filtration, the solvent was removed under reduced pressure to give an oil which was triturated with ethanol (3 cm³). The addition of an excess of NaBPh₄ (1 mmol, 0.342 g) in ethanol (5 cm³) to the resulting solution gave a white solid which was filtered off and crystallised from CH₂Cl₂ (3 cm³) and ethanol (5 cm³); yield ≥60%.

[Ru(η¹-OSO₂CF₃)(Me₂NNH₂){P(OEt)₃}₄]BPh₄ 9. An excess of N,N-dimethylhydrazine (1.2 mmol, 91 μl) was added to a freshly prepared suspension of [Ru(η²-O₂SOCF₃)L₄]⁺ (0.3 mmol) in toluene (10 cm³) and the reaction mixture stirred for 24 h. The solvent was removed under reduced pressure to give an oily product which was treated with ethanol (4 cm³) containing an excess of NaBPh₄ (2 mmol, 0.68 g). A white solid slowly separated under vigorous stirring, which was filtered off and crystallised from CH₂Cl₂ (2 cm³) and ethanol (5 cm³); yield ≥70%

[Ru(RNHNH₂)(MeCN)L₄][BPh₄]₂ [L = P(OEt)₃ 10 or PPh-(OEt)₂ 11; R = H a, Ph c or 4-O₂NC₆H₄ e]. To a solution of [Ru(MeCN)₂L₄][BPh₄]₂ (0.25 mmol) in CH₂Cl₂ (6 cm³) was added an equimolar amount of the appropriate hydrazine (0.25 mmol) and the reaction mixture was stirred at room temperature for 24 h. The solvent was removed under reduced pressure giving an oil which was treated with ethanol (2 cm³) and vigorously stirred at 0 °C until a white solid separated from the resulting solution. The solid was filtered off and crystallised by slow cooling to −25 °C of its solution prepared by dissolving the compound in ethanol (5 cm³) and enough CH₂Cl₂ to obtain a saturated solution at room temperature; yield ≥45%.

[Ru(RNHNH₂)(4-MeC₆H₄CN)L₄][BPh₄]₂ [L = P(OEt)₃ 12 or PPh(OEt)₂ 13; R = Ph c or 4-MeC₆H₄ d]. These complexes were prepared exactly like the related 10 and 11 by treating the dinitrile complex [Ru(4-MeC₆H₄CN)₂L₄][BPh₄]₂ with an equimolar amount of the appropriate hydrazine in CH₂Cl₂ for 24 h; yield $\geq 50\%$.

 $[Ru(4-O_2NC_6H_4NHNH_2)(4-MeC_6H_4CN)\{P(OEt)_3\}_4][BPh_4]_2 \ 12e \ and \ [Ru(Me_2NNH_2)(4-MeC_6H_4CN)\{P(OEt)_3\}_4][BPh_4]_2 \ 12f.$ To a solution of [Ru(4-MeC_6H_4CN)_2\{P(OEt)_3\}_4][BPh_4]_2 (0.12 mmol, 0.20 g) in CH_2Cl_2 (20 cm³) was added an excess of the appropriate hydrazine (0.30 mmol) and the reaction mixture stirred for 24 h. The solvent was removed under reduced pressure giving an oil which was triturated with ethanol (3 cm³). The resulting solution was vigorously stirred until a solid separated which was filtered off and crystallised from a mixture of CH_2Cl_2 and ethanol. A typical crystallisation involved the preparation of a solution of the compound by treating the solid sample with ethanol (7 cm³) and enough CH_2Cl_2 to obtain a

saturated solution at room temperature which was slowly cooled to $-25\,^{\circ}\mathrm{C}$ giving microcrystals of the product; yield $\geq 55\%$.

 $[Ru\{\eta^2-NH=C(4-MeC_6H_4)NHNH_2\}\{P(OEt)_3\}_4][BPh_4]_2$ and $[Ru\{\eta^2-NH=C(Me)N(Me)NH_2\}\{P(OEt)_3\}_4][BPh_4]_2$ 15. An equimolar amount of the hydrazine NH₂NH₂ or MeNHNH₂ (0.2 mmol) was added to a solution of the appropriate nitrile complex $[Ru(RCN)_2{P(OEt)_3}_4][BPh_4]_2 (R = 4-MeC_6H_4 \text{ or Me})$ (0.2 mmol) in CH₂Cl₂ (10 cm³) and the reaction mixture stirred for 24 h. The solvent was removed under reduced pressure giving an oil which was treated with ethanol (3 cm³) containing an excess of NaBPh₄ (0.3 mmol, 0.1 g). A white solid separated from the resulting solution which was filtered off and fractionally crystallised in order to separate the amidrazone complex in pure form. A typical separation involved the addition of ethanol (7 cm³) to the raw solid sample and enough CH₂Cl₂ to obtain a saturated solution at room temperature. By slow cooling to 0 °C a first fraction of the complex 14 or 15 was obtained. Further cooling of the solution to -30 °C gave an impure fraction which must be recrystallised. The total yield obtained of the pure compound was about 35%.

Oxidation reactions

The oxidation of the hydrazine complexes was carried out at low temperature (-30 to -40 °C) using Pb(O₂CMe)₄ as an oxidant. In a typical reaction a sample of the appropriate complex (0.2 mmol) was placed in a three-necked flask (25 cm³) fitted with a solid-addition sidearm containing an equimolar amount or an excess of Pb(O₂CMe)₄. Dichloromethane was added, the solution cooled to -30 or -40 °C and the Pb(O₂-CMe)₄ added portionwise in about 20–30 min to the cold stirred solution. Then the solution was filtered and the solvent removed under reduced pressure giving an oil which was treated with ethanol (5 cm³) containing an excess of NaBPh₄ (0.4 mmol, 0.14 g). A yellow or white solid slowly separated which was filtered off and crystallised.

[Ru(η²-O₂CMe){P(OEt)₃}₄]BPh₄ 16. This complex was obtained in high yield (≥80%) as a white solid from the oxidation of the [Ru(NH₂NH₂)₂L₄]²+ or the [Ru(MeNHNH₂)₂L₄]²+ cation (0.2 mmol) with Pb(O₂CMe)₄ (0.4 mmol, 0.177 g). The complex was crystallised from ethanol.

[RuH(PhN=NH){P(OEt)₃}₄]BPh₄ 18. The compound was prepared by oxidation of [RuH(PhNHNH₂){P(OEt)₃}₄]BPh₄ (0.2 mmol, 0.24 g) with an equimolar amount of Pb(O₂CMe)₄ (0.2 mmol, 0.089 g). The reaction product also contains the [Ru(η²-O₂CMe){P(OEt)₃}₄]BPh₄ complex which was removed by fractional crystallisation from ethanol giving a pure sample of [RuH(PhN=NH){P(OEt)₃}₄]BPh₄; yield ≥20%.

[Ru(PhN=NH)₂{P(OEt)₃}₄][BPh₄]₂ 19. The compound was prepared by oxidation of [Ru(PhNHNH₂)₂{P(OEt)₃}₄][BPh₄]₂ (0.2 mmol, 0.32 g) with Pb(O₂CMe)₄ (0.4 mmol, 0.177 g) in a 1:2 ratio. A mixture of [Ru(PhN=NH)₂{P(OEt)₃}₄][BPh₄]₂ and [Ru(η²-O₂CMe){P(OEt)₃}₄]BPh₄ was obtained from which the bis(diazene) derivative was separated by fractional crystallisation from ethanol; yield ≥25%.

Crystallography

Suitable crystals of complex 16 for X-ray analysis were obtained by recrystallisation from ethanol. Automatic peak search and indexing procedures carried out on a Siemens AED diffractomer yielded a monoclinic primitive cell. Inspection of systematic absences and E statistics indicated unambiguously the space group as $P2_1/n$. Pertinent crystal data and basic information about data collection and structure refinement are given in Table 2. During data collection the intensity of one

$$\begin{split} [RuH_2L_4] & \xrightarrow{(i)} [RuH(\eta^1\text{-OSO}_2CF_3)L_4] \\ & \xrightarrow{(iii)} [RuH(RNHNH_2)L_4]^+ \\ & 1,2,3 \end{split}$$

$$[RuH_2L_4] \xrightarrow{(ii)} [Ru(\eta^2\text{-O}_2SOCF_3)L_4]^+$$

$$[RuH_2L_4] \xrightarrow{(iii)} [Ru(\eta^2 - O_2SOCF_3)L_4]^+$$
$$\xrightarrow{(iiii)} [Ru(RNHNH_2)_2L_4]^{2+}$$
$$\mathbf{4.5.6}$$

Scheme 1 L = P(OEt)₃ 1 or 4, PPh(OEt)₂ 2 or 5 or P(OMe)₃ 3 or 6; R = H a, Me b, Ph c, 4-MeC₆H₄ d or 4-O₂NC₆H₄ e or Me₂-NNH₂ f. (i) One equivalent of CF₃SO₃H at -78 °C; (iii) 2 equivalents of CF₃SO₃H at -78 °C; (iii) an excess of RNHNH₂

standard reflection was monitored to check crystal decomposition or loss of alignment. A decay (15%) was detected and a correction applied during data reduction. Lorentz-polarisation effects were also considered.

The structure consists of discrete [Ru(η²-O₂CMe)-{P(OEt)₃}₄]⁺ cations and BPh₄⁻ anions. The phase problem was solved by direct methods 12 and the structure refined by fullmatrix least squares based on F^2 with non-hydrogen atoms belonging to the cation allowed anisotropic vibration. All hydrogen atoms were introduced in idealised positions and refined riding on their attached atoms. To prevent overfitting, the C-C and C-O bond distances were restrained to be similar for all ethoxy groups, and the thermal motion of carbon atoms was restrained to be approximately isotropic and to fulfil rigidbond requirements, as implemented in SHELXL 93.13 Neutral scattering factors were employed and anomalous dispersion terms were included for non-hydrogen atoms. Calculations were performed on an ENCORE91 computer using the programs SIR 92, 12 SHELXL 93, 13 PARST 95 14 and ZORTEP. 15 Use was made of the Cambridge Structural Database 16 facilities at the Centro di Studio per la Strutturistica Diffrattometrica del C.N.R. in Parma.

CCDC reference number 186/719.

Results and Discussion

Preparation of hydrazine complexes

Hydridehydrazine [RuH(RNHNH₂)L₄]BPh₄ 1-3 and bis(hydrazine) complexes [Ru(RNHNH₂)₂L₄][BPh₄]₂ 4-6 were prepared by treating hydride species [RuH2L4] first with triflic acid and then with the appropriate hydrazine, as shown in Scheme 1. The reaction of [RuH₂L₄] with 1 equivalent of CF₃SO₃H at low temperature proceeds with the formation of the dihydrogen cations ¹⁷ [RuH(η^2 -H₂)L₄]⁺CF₃SO₃⁻ (detected by the ¹H NMR spectra of the solution) which slowly afford the final triflate complexes [RuH(η¹-OSO₂CF₃)L₄] by substitution of the H₂ ligand with the CF₃SO₃ ion. In the case of the P(OEt)₃ coligand the $[RuH(\eta^1-OSO_2CF_3)\{P(OEt)_3\}_4]$ complex was also separated as an oily product and characterised by IR and NMR spectroscopy. Treatment of the η^1 -triflate complexes with further CF₃SO₃H probably results in the formation of new, unstable dihydrogen derivatives $[Ru(\eta^2-H_2)(\eta^1-OSO_2CF_3)L_4]^+$ which lose H_2 and give the η^2 -triflate $[Ru(\eta^2-O_2SOCF_3)L_4]^+$ cations which can be isolated as BPh $_4$ ⁻ salts and characterised. The η^2 coordination of the CF $_3$ SO $_3$ ligand in these monocationic 18 complexes is further supported by the symmetric A2B2 multiplet observed in the ³¹P-{¹H} NMR spectra. By treating both the η^{1} - and η^{2} -triflate complexes with the appropriate hydrazine the new ruthenium derivatives 1-6 can easily be prepared and characterised.

Good analytical data were obtained for all the hydrazine complexes 1–6 which are pale yellow or white solids, stable in the air and soluble in polar organic solvents where they behave as 1:1 (1–3) or 2:1 (4–6) electrolytes. Their infrared and NMR data are reported in Table 1. The presence of the hydra-

Table 1 Infrared and NMR data for the ruthenium complexes

	IR b		¹ H NMR ^{c,d}			$^{31}P-\{^{1}H\} NMR^{c,e}$
Compound a	ν̄/cm ⁻¹	Assignment	δ	Assignment	Spin system	δ (<i>J</i> /Hz)
1a [RuH(NH ₂ NH ₂)-	3376m	v(NH)	$4.20-3.78 \text{ (m)}^f$	POCH ₂ CH ₃	AB_2C^f	δ_{A} 148.9, δ_{B} 142.5, δ_{C} 137.4
$\{P(OEt)_3\}_4\}^+$	3338m	V(TVII)	3.14 (br)	RuNH ₂	71B ₂ C	$J_{AB} = 62.7, J_{AC} = 39.2,$
73742	3273m		1.29 (t), 1.25 (t)	$POCH_2CH_3$		$J_{\rm BC} = 45.2$
	1879m	v(RuH)	1.21 (t)			
41 (D. 11/2 (1592w	$\delta(NH_2)$	-7.68 to -8.68 (m)	RuH	A.D. C	\$ 150.0 \$ 142.0 \$ 120.2
1b [RuH(MeNHNH ₂)- { $P(OEt)_3$ } ₄] ⁺	3348m 3322m	ν(NH)	4.28–3.90 (m) 3.10 (m)	POCH ₂ CH ₃ CH ₃ N <i>H</i>	AB_2C	$\delta_{\rm A}$ 150.9, $\delta_{\rm B}$ 143.9, $\delta_{\rm C}$ 139.3
{F(OEt)3}4]	1839m	ν(RuH)	2.49 (d)	CH ₃ NH		$J_{AB} = 62.7, J_{AC} = 39.8,$ $J_{BC} = 44.6$
	1007111	(11011)	1.31 (t), 1.29 (t),	$POCH_2CH_3$		A BC . THE
			1.24 (t)			
		2.77	-7.60 to -8.60 (m)	RuH		2 4 4 2 4 4 4 4 2 4 4 5 2
1c [RuH(PhNHNH ₂)- { $P(OEt)_3\}_4$] ⁺	3367m 3323m	ν(NH)	4.89 (m) ^g 4.79 (m)	C ₆ H ₅ N <i>H</i> RuNH ₂	AB_2C^g	δ_{A} 148.4, δ_{B} 141.4. δ_{C} 136.8
{F(OEt)3}4]	3312m		4.12–3.78 (m)	POCH ₂ CH ₃		$J_{AB} = 62.8, J_{AC} = 39.3, J_{BC} = 45.6$
	1839m	ν(RuH)	1.27 (t), 1.21 (t),	$POCH_2CH_3$		A BC 1616
	1605m	$\delta(NH_2)$	1.18 (t)			
ALID HAM CHANDHIA	2256	O.H.D.	-7.67 to -8.67 (m)	RuH	A.D. C	\$ 150.0 \$ 140.0 \$ 120.2
1d [RuH(4-MeC ₆ H ₄ NHNH ₂)- { $P(OEt)_3$ } ₄] ⁺	3356w 3331w	ν(NH)	5.21 (m, br) 4.94 (m, br)	4-MeC ₆ H ₄ N <i>H</i> RuNH ₂	AB_2C	$\delta_{\rm A}$ 150.0, $\delta_{\rm B}$ 142.8, $\delta_{\rm C}$ 138.3
{F(OEt)3}4]	3322w		4.30–3.95 (m)	POCH ₂ CH ₃		$J_{AB} = 62.8, J_{AC} = 39.5,$ $J_{BC} = 45.4$
	1875m	ν(RuH)	2.23 (s)	CH ₃ p-tolyl		BC - 13.1
	1605m	$\delta(NH_2)$	1.34 (t), 1.28 (t).	$POCH_2CH_3$		
			1.23 (t)	D 11		
1e [RuH(4-O ₂ NC ₆ H ₄ NHNH ₂)-	3392m	ν(NH)	-7.43 to -8.43 (m) 6.39 (m)	RuH $4-O_2NC_6H_4NH$	A D. C	$\delta_{\rm A}$ 149.2, $\delta_{\rm B}$ 142.1, $\delta_{\rm C}$ 137.7
$\{P(OEt)_3\}_4\}^+$	3369m	V(INII)	5.24 (m)	$RuNH_2$	AB_2C	$J_{AB} = 63.4$. $J_{AC} = 40.4$,
(1 (020)3)4]	3312m		4.34–3.94 (m)	POCH ₂ CH ₃		$J_{\rm BC} = 45.5$
	1844m	$\nu(RuH)$	1.35 (t), 1.28 (t),	$POCH_2CH_3$		
	1602m	$\delta(NH_2)$	1.23 (t)			
1f [Dull/Ma NNIH)	3316m	··(NIH)	-7.35 to -8.35 (m)	RuH	A D. C	\$ 151.6 \$ 142.0 \$ 127.4
1f [RuH(Me ₂ NNH ₂)- {P(OEt) ₃ } ₄] ⁺	1879m	ν(NH) ν(RuH)	4.30 (m, br) 4.26–3.95 (m)	RuNH ₂ POC <i>H</i> ₂ CH ₃	AB_2C	δ_{A} 151.6, δ_{B} 142.9, δ_{C} 137.4 $J_{AB} = 62.7$, $J_{AC} = 36.2$,
(1 (020)3)4]	10/7111	v(Itali)	2.50 (s)	$N(CH_3)_2$		$J_{\rm BC} = 47.1$
			1.31 (t), 1.26 (t)	$POCH_2CH_3$		
			-7.33 to -8.36 (m)	RuH	. 5. 6.6	
$2a \left[RuH(NH_2NH_2) - \frac{1}{2} \right]$	3370w 3333w	ν(NH)	$4.00-3.16 \text{ (m)}^{f}$	POCH ₂ CH ₃	AB_2C^f	$\delta_{\rm A}$ 170.3, $\delta_{\rm B}$ 165.0, $\delta_{\rm C}$ 159.9
$\{PPh(OEt)_2\}_4]^+$	3265w		3.44 (m, br) 1.25 (t), 1.22 (t),	RuNH ₂ POCH ₂ C <i>H</i> ₃		$J_{AB} = 46.6, J_{AC} = 28.7, J_{BC} = 31.8$
	1922m (br)	ν(RuH)	1.18 (t), 0.88 (t)	1 0 0 1 1 2 0 1 1 3		3 BC = 31.0
	()	,	-7.43 to -8.33 (m)	RuH		
2b [RuH(MeNHNH ₂)-	3341w	ν(NH)	4.26 (br)	RuNH ₂	AB_2C	δ_{A} 171.9, δ_{B} 166.0, δ_{C} 161.0
$\{PPh(OEt)_2\}_4]^+$	3305 m 1942m	ν(RuH)	4.10–3.25 (m) 3.60 (m)	POC <i>H</i> ₂ CH ₃ CH ₃ N <i>H</i>		$J_{AB} = 46.8, J_{AC} = 29.3,$ $J_{BC} = 30.6$
	1942111	V(Kufi)	2.36 (d)	CH ₃ NH		$J_{\rm BC} = 30.0$
			1.28 (t), 1.27 (t),	POCH ₂ CH ₃		
			1.23 (t), 0.91 (t)			
• FD 11/013/113/11	2200	O.H.D.	-7.32 to -8.22 (m)	RuH		2 151 4 2 165 5 2 161 6
$2c [RuH(PhNHNH2)-{PPh(OEt)2}4]+$	3380w 3305w	ν(NH)	5.44 (br) 4.49 (br)	C ₆ H ₅ N <i>H</i> RuNH ₂	AB_2C	$\delta_{\rm A}$ 171.4, $\delta_{\rm B}$ 165.7, $\delta_{\rm C}$ 161.6
{FFII(OEt) ₂ } ₄]	3303W 3228W		4.50–3.30 (m)	POCH ₂ CH ₃		$J_{AB} = 46.8, J_{AC} = 30.1,$ $J_{BC} = 31.8$
	1908m	ν(RuH)	1.28 (t), 1.16 (t),	$POCH_2CH_3$		A BC DITO
	1601m	$\delta(NH_2)$	1.04 (t), 0.97 (t)			
2 (D. HOHL)	2265	OHD	-7.15 to -8.05 (m)	RuH	AD Cf	\$ 154.0 \$ 140.2 \$ 140.2
3a [RuH(NH ₂ NH ₂)- {P(OMe) ₃ } ₄] ⁺	3365w 3340m	ν(NH)	4.50 (br) 4.35 (br)	RuNH ₂ NH ₂	AB_2C^f	δ_{A} 154.0, δ_{B} 148.3, δ_{C} 142.2 $J_{AB} = 63.6$, $J_{AC} = 40.0$,
(1 (ONIC)3)4]	3279w		4.33 (01)	11112		$J_{AB} = 05.0, J_{AC} = 40.0,$ $J_{BC} = 44.4$
	1875m	ν(RuH)	$4.01 (br)^f$	$RuNH_2$		BC
			3.68 (t), 3.61 (d),	POCH ₃		
			3.48 (d)	D II		
4a [Ru(NH ₂ NH ₂) ₂ -	3375m	ν(NH)	-7.59 to -8.59 (m) 4.38 (br)^f	RuH RuNH,	$A_2B_2^f$	$\delta_{A} 130.2, \delta_{B} 120.5$
$\{P(OEt)_3\}_4\}^{2+}$	3325w	V(1411)	4.20–3.90 (m)	POCH ₂ CH ₃	A_2D_2	$J_{AB} = 61.8$
73742	3315 (sh)		2.90 (br)	NH ₂		AB
	3266w	2017	1.33 (t), 1.29 (t)	$POCH_2CH_3$		
4h ID(M-NIINIII)	1617m	$\delta(NH_2)$	4.00 (1)	DNIII	A D	\$ 121.2 \$ 121.2
4b [Ru(MeNHNH ₂) ₂ - { $P(OEt)_3$ } ₄] ²⁺	3350w 3313w	ν(NH)	4.98 (br) 4.45–4.20 (m)	RuNH ₂ POC <i>H</i> ₂ CH ₃	A_2B_2	$\delta_{A} 131.3, \delta_{B} 121.3$ $J_{AB} = 62.1$
(I (OL)/3/4]	3299w		2.90 (br)	CH ₃ N <i>H</i>		VAB = 02.1
	1597w	$\delta(NH_2)$	2.68 (d)	CH_3NH		
4 In (DIATETY)	2215	OHT.	1.42 (t), 1.37 (t)	POCH ₂ CH ₃	4 D	S 120 0 S 120 C
4c $[Ru(PhNHNH_2)_2$ - $\{P(OEt)_3\}_4]^{2+}$	3317m 3298w	ν(NH)	6.65 (t, br) 5.85 (br)	C ₆ H ₅ N <i>H</i> RuNH ₂	A_2B_2	$\delta_{A} 130.0, \delta_{B} 120.6$ $J_{AB} = 62.0$
\1 (OD()3}4]	3298W 3240W		3.83 (BF) 4.54–4.30 (m)	POCH ₂ CH ₃		JAB — U∠.U
	1601w	$\delta(NH_2)$	1.42 (t), 1.39 (t)	$POCH_2CH_3$		

 Table 1 (Continued)

	IR b		¹ H NMR ^{c,d}			³¹ P-{ ¹ H} NMR ^{c,e}
Compound a		Assignment	δ	Assignment	Spin system	δ (<i>J</i> /Hz)
5a [Ru(NH ₂ NH ₂) ₂ -	3370w	v(NH)	$4.00-3.30 \text{ (m)}^f$	POCH ₂ CH ₃	$A_2B_2^f$	$\delta_{\rm A}$ 159.6, $\delta_{\rm B}$ 151.4
$\{PPh(OEt)_2\}_4]^{2+}$	3342w	(1,11)	3.95 (br)	RuNH ₂	11202	$J_{AB} = 48.0$
	3317w		2.86 (br)	NH ₂		
	3263w	(1114)2	1.27 (t), 1.24 (t)	$POCH_2CH_3$		
5b [Ru(MeNHNH ₂) ₂ -	1603m 3334w	$\delta(NH_2)$ $\nu(NH)$	4.23 (br)	RuNH ₂	A_2B_2	δ_{A} 159.8, δ_{B} 152.0
$\{PPh(OEt)_2\}_4\}^{2+}$	3302w	V(1111)	4.00–3.60 (m)	POCH ₂ CH ₃	11202	$J_{AB} = 47.9$
	3259w		3.95 (br)	CH_3NH		
			2.27 (d)	CH ₃ NH		
5c [Ru(PhNHNH ₂) ₂ -	3330w	ν(NH)	1.39 (t), 1.36 (t) 5.33 (br)	POCH ₂ C <i>H</i> ₃ RuNH ₂	A_2B_2	δ_{A} 159.3, δ_{B} 152.1
$\{PPh(OEt)_2\}_4\}^{2+}$	3305w	V(1111)	4.30–3.70 (m)	POCH ₂ CH ₃	11202	$J_{AB} = 47.4$
	3294w		1.36 (t), 1.26 (t)	$POCH_2CH_3$		
(- ID(NIII NIII)	1601m	$\delta(NH_2)$	5 06 (h) h	DNIII	A D //	\$ 127.4 \$ 126.6
6a [Ru(NH ₂ NH ₂) ₂ - {P(OMe) ₃ } ₄] ²⁺	3374w 3344w	ν(NH)	5.06 (br) ^h 3.82 (t), 3.68 (m, br)	RuNH ₂ POCH ₃	$A_2B_2^h$	$\delta_{A} 137.4, \delta_{B} 126.6$ $J_{AB} = 61.4$
(1 (01410)3)4]	3312m		2.48 (br)	NH ₂		JAB - 01.4
	3270m		` /	-		
TID (2 DI COMUNIL)	1609m	$\delta(NH_2)$	7.60 (4.1.) f	NIII	ADC	\$ 1240 \$ 1220 \$ 1107
7 [Ru(η^2 -PhCONHNH ₂)- {P(OEt) ₃ } ₄] ²⁺	3296m 3236w	ν(NH)	7.60 (t, br) ^f 5.55 (m, br)	NH RuNH₂	ABC ₂	δ_{A} 134.9, δ_{B} 132.0, δ_{C} 119.7 $J_{AB} = 84.7$, $J_{AC} = 60.0$,
(1 (OLt)3)4]	3207w		4.20–3.90 (m)	POCH ₂ CH ₃		$J_{\text{BC}} = 59.9$
	1632m	ν(CO)	1.32 (t), 1.30 (t)	$POCH_2CH_3$		Be
ofb (2 pt continut)	1603m	$\delta(NH_2)$	1.18 (t)	D MIII	ADG f	\$ 160.0 \$ 150.7 \$ 140.0
8 [Ru(η^2 -PhCONHNH ₂)- {PPh(OEt) ₂ } ₄] ²⁺	3509w 3295w	ν(NH)	5.20 (m, br) ^f 4.10–3.50 (m)	RuNH ₂ POC <i>H</i> ₂ CH ₃	ABC_2^f	δ_{A} 160.0, δ_{B} 158.7, δ_{C} 148.0 $J_{AB} = 63.8$, $J_{AC} = 45.2$,
{1 1 II(OLU)2} 4]	1627m	v(CO)	1.38 (t), 1.32 (t),	$POCH_2CH_3$		$J_{AB} = 05.6, J_{AC} = 45.2,$ $J_{BC} = 45.2$
	1603m	$\delta(NH_2)$	1.23 (t), 1.20 (t)	2 - 3		BC
9 [Ru(η^1 -OSO ₂ CF ₃)(Me ₂ -	3302m	ν(NH)	5.12 (m, br)	RuNH ₂	ABC_2	δ_{A} 134.1, δ_{B} 129.8, δ_{C} 120.8
$NNH_2)\{P(OEt)_3\}_4]^+$	3232w 1616m	$\delta(NH_2)$	4.44–4.10 (m) 2.72 (s)	$POCH_2CH_3$ $N(CH_3)_2$		$J_{AB} = 75.5, J_{AC} = 59.6,$ $J_{BC} = 65.3$
	1010111	0(11112)	1.41 (t), 1.38 (t),	$POCH_2CH_3$		$J_{\rm BC} = 0.5.5$
			1.37 (t), 1.35 (t)	2 - 3		
10c [Ru(PhNHNH ₂)(MeCN)- $(R(QF))$) $(R(QF))$	3365w	ν(NH)	5.78 (br)	C_6H_5NH	ABC_2	δ_{A} 130.0, δ_{B} 125.5, δ_{C} 120.1
${P(OEt)_3}_4]^{2+}$	3357w 3311w		5.56 (br) 4.40–4.20 (m)	RuNH ₂ POC <i>H</i> ₂ CH ₃		$J_{AB} = 71.6, J_{AC} = 57.6,$ $J_{BC} = 63.1$
	1601m	$\delta(NH_2)$	2.67 (s)	CH ₃ CN		$J_{\rm BC} = 0.5.1$
		- (- :2)	1.41 (t), 1.37 (t).	$POCH_2CH_3$		
			1.34 (t)			
10e [Ru(4-O ₂ NC ₆ H ₄ NHNH ₂)- (MeCN){ $P(OEt)_3$ } ₄] ²⁺	3390w 3289w	ν(NH)	7.14 (m, br) 4.40–4.10 (m)	RuNH ₂ POC <i>H</i> ₂ CH ₃	ABC ₂	δ_{A} 134.8, δ_{B} 132.6, δ_{C} 120.1 $J_{AB} = 74.5$, $J_{AC} = 62.3$,
(MCCIV){1 (OEt)3}4]	3235w		2.22 (s)	CH ₃ CN		$J_{AB} = 74.3, J_{AC} = 02.3,$ $J_{BC} = 57.2$
	1635m	$\delta(NH_2)$	1.40 (t), 1.38 (t),	$POCH_2CH_3$		BC
44 (D. O.W.) WILLOW	2271	O.H.D.	1.34 (t), 1.31 (t)	DO GAY GIA	A D.C. f	2 150 5 2 155 5 2 140 5
11a [Ru(NH ₂ NH ₂)(MeCN)- {PPh(OEt) ₂ } ₄] ²⁺	3371w 3316w	ν(NH)	4.10–3.60 (m) ^f 2.24 (br)	$POCH_2CH_3$ $RuNH_2$	ABC_2^f	δ_{A} 158.5, δ_{B} 155.5, δ_{C} 149.7 $J_{AB} = 55.5$, $J_{AC} = 41.9$,
{1 1 II(OEt) ₂ ;4]	3265w		1.34 (t), 1.31 (t),	POCH ₂ CH ₃		$J_{AB} = 35.5, J_{AC} = 41.9,$ $J_{BC} = 47.9$
			1.28 (t)	2 - 3		BC
44 10 (01) 110 111 141 141 (01)	2252	OHD	0.87 (s)	CH ₃ CN	1 D.C	2 150 6 2 155 0 2 140 0
11c [Ru(PhNHNH ₂)(MeCN)- { $PPh(OEt)_2$ } ₄] ²⁺	3373w 3292w	ν(NH)	5.08 (m, br) 4.89 (m, br)	C ₆ H ₅ N <i>H</i> RuNH ₂	ABC_2	δ_{A} 158.6, δ_{B} 155.9, δ_{C} 149.8 $J_{AB} = 56.7$, $J_{AC} = 42.4$,
{1 1 II(OEt) ₂ ;4]	3292w 3225w		4.20–3.80 (m)	POCH ₂ CH ₃		$J_{AB} = 30.7, J_{AC} = 42.4,$ $J_{BC} = 47.4$
	1601m	$\delta(NH_2)$	1.49 (s)	CH ₃ CN		Be
			1.43 (t), 1.41 (t),	$POCH_2CH_3$		
12c [Ru(PhNHNH ₂)(4-Me-	3360w	ν(NH)	1.37 (t), 1.09 (t) 5.93 (m)	C_6H_5NH	ABC ₂	δ_{A} 129.9, δ_{B} 125.2, δ_{C} 119.6
$C_6H_4CN)\{P(OEt)_3\}_4\}^{2+}$	3311w	V(INII)	5.69 (m)	RuNH ₂	ABC_2	$J_{AB} = 71.6, J_{AC} = 57.6,$
-0 4- 70 (- 73742	3245w		4.50–4.25 (m)	$POCH_2$ CH ₃		$J_{\rm BC} = 63.0$
	2260m	v(CN)	2.47 (s)	CH ₃ p-tolyl		
	1602m	$\delta(NH_2)$	1.41 (t), 1.37 (t),	$POCH_2CH_3$		
12d [Ru(4 -MeC ₆ H ₄ NHNH ₂)-	3358w	ν(NH)	1.33 (t) 5.78 (br)	4-CH ₃ C ₆ H ₄ NH	ABC ₂	δ_{A} 130.0, δ_{B} 125.2, δ_{C} 119.7
$(4-\text{MeC}_6\text{H}_4\text{CN})\{P(\text{OEt})_3\}_4]^{2+}$	3313w	. (= .==)	5.62 (br)	RuNH ₂		$J_{AB} = 71.6, J_{AC} = 57.5,$
	3247w		4.45–4.25 (m)	$POCH_2CH_3$		$J_{\rm BC} = 62.8$
	2260m	ν(CN)	2.46 (s)	4-CH ₃ (CN)	`	
	1604m	$\delta(NH_2)$	2.26 (s) 1.40 (t), 1.32 (t)	4-CH ₃ (NHNH ₂ POCH ₂ CH ₃	,	
12e [Ru(4-O ₂ NC ₆ H ₄ NHNH ₂)-	3380w	$\nu(NH)$	4.42–4.20 (m)	$POCH_2CH_3$	ABC_2	δ_{A} 133.9, δ_{B} 132.2, δ_{C} 119.7
$(4-MeC_6H_4CN)\{P(OEt)_3\}_4]^{2+}$	3290w	•	2.29 (s)	CH ₃ p-tolyl		$J_{AB} = 74.0, J_{AC} = 62.3,$
	3237w 2263m	v(CN)	1.41 (t), 1.36 (t),	$POCH_2CH_3$		$J_{\rm BC} = 57.8$
	1609m	$\delta(NH_2)$	1.33 (t)			
		- (2)				

Table 1 (Continued)

	IR b		¹ H NMR ^{c,d}			$^{31}P-\{^{1}H\} NMR^{c,e}$
Compound a	ν̄/cm ⁻¹	Assignment	δ	Assignment	Spin system	δ (<i>J</i> /Hz)
$\begin{aligned} &\textbf{12f}\left[Ru(Me_2NHNH_2)-\right.\\ &(4\text{-MeC}_6H_4CN)\{P(OEt)_3\}_4]^{2^+} \end{aligned}$	3308w 2264m 1603m	ν(NH) ν(CN) δ(NH ₂)	4.68 (m, br) 4.50–4.20 (m) 2.69 (s) 2.46 (s) 1.41 (t), 1.40 (t), 1.38 (t)	RuNH ₂ POC H_2 CH ₃ N(CH ₃) ₂ CH ₃ p -tolyl POCH ₂ C H_3	ABC ₂	δ_{A} 130.2, δ_{B} 124.0, δ_{C} 119.8 $J_{AB} = 67.2, J_{AC} = 57.5,$ $J_{BC} = 64.8$
13c [Ru(PhNHNH ₂)(4-Me- C ₆ H ₄ CN){PPh(OEt) ₂ } ₄] ²⁺	3377w 3293w 2250m 1602m	$\nu(NH)$ $\nu(CN)$ $\delta(NH_2)$	5.26 (br) 5.09 (br) 4.30–3.50 (m) 2.38 (s) 1.47 (t), 1.40 (t)	C ₆ H ₅ N <i>H</i> RuNH ₂ POC <i>H</i> ₂ CH ₃ CH ₃ <i>p</i> -tolyl POCH ₂ C <i>H</i> ₃	ABC ₂	δ_{A} 158.9, δ_{B} 155.1, δ_{C} 149.9 $J_{AB} = 56.1, J_{AC} = 41.9,$ $J_{BC} = 48.0$
14 [Ru{η²-NH=C(4-MeC ₆ H ₄)- NHNH ₂ }{P(OEt) ₃ } ₄] ²⁺	3397w 3333w 3310w	ν(NH)	9.57 (br) 7.50 (m, br)	NH= NH	ABC ₂ ^f	δ_{A} 135.2, δ_{B} 133.1, δ_{C} 120.4 $J_{AB} = 73.1$, $J_{AC} = 62.1$, $J_{BC} = 57.3$
	1635m	$\delta(\mathrm{NH_2})$	7.20 (br) ^f 5.83 (m, br) 5.52 (m, br) 4.20–3.90 (m) 2.39 (s) 1.32 (s), 1.28 (t), 1.22 (t)	$NH=$ $RuNH_2$ NH $POCH_2CH_3$ CH_3 p -tolyl $POCH_2CH_3$		
15 [Ru{ η^2 -NH=C(Me)-N(Me)NH $_2$ }{ $P(OEt)_3$ } $_4$] $^{2+}$	3399w 3307w 1641m	$v(NH)$ $\delta(NH_2)$	7.80 (br) 6.55 (br) 4.45–4.15 (m) 2.55 (s), 2.45 (s) 1.40 (t), 1.38 (t), 1.34 (t)	$\begin{array}{l} \text{NH=} \\ \text{RuNH}_2 \\ \text{POC}H_2\text{CH}_3 \\ \text{NCH}_3 + \text{CCH}_3 \\ \text{POCH}_2\text{C}H_3 \end{array}$		132–118 (m)
16 [Ru(η^2 -O ₂ CMe)- {P(OEt) ₃ } ₄] ⁺ⁱ	1524m	ν(CO)	4.25–4.05 (m) 1.86 (s) 1.32 (t), 1.29 (t)	POCH ₂ CH ₃ CH ₃ CO ₂ POCH ₂ CH ₃	$A_2B_2^f$	$\delta_{A} 139.5, \delta_{B} 126.4$ $J_{AB} = 57.2$

^a All compounds are BPh₄⁻ salts. ^b In KBr pellets. ^c In (CD₃)₂CO. ^d Phenyl-proton resonances are omitted. ^e Positive shift downfield from 85% H₃PO₄. ^f In CD₂Cl₂. ^g In CDCl₃. ^h In (CD₃)₂SO. ^{i 13}C NMR: δ 187.8 (m, CO), 165–122 (m, Ph), 62.5 (t), 62.3 (t) (CH₂), 24.3 (s, MeCO₂), 16.5 (t), 16.3 (t) (CH₃ of phosphite).

zine ligand in all the compounds is confirmed by the IR spectra which show the characteristic v(NH) and δ(NH₂) bands, observed at 3392–3228 (weak) and at 1617–1592 (medium) cm⁻¹, respectively. Furthermore, in the ¹H NMR spectra the NH₂ and NH proton signals of the hydrazine ligand have been identified and properly attributed by accurate integration and decoupling experiments, so confirming the co-ordination of the RNHNH₂ ligand. Finally, in the complexes **1a–6a** containing the NH₂NH₂ ligand both the signals of the co-ordinated and free NH₂ protons appear in the ¹H spectra, so excluding the presence of a dimeric complex with NH₂NH₃ bridging.

The infrared spectra of the hydridehydrazine derivatives $[RuH(RNHNH_2)L_4]^+$ 1–3 also show a medium-intensity v(RuH) band at 1922–1839 cm⁻¹. Furthermore, in the ¹H NMR spectra the hydride ligand appears as a multiplet between δ –8.68 and –7.15. Finally, in the temperature range from +30 to –90 °C the ³¹P-{¹H} NMR spectra appear as a AB₂C multiplet simulable with the parameters reported in Table 1 and suggesting the existence in solution of a type I geometry with the hydride and the hydrazine ligands in a mutually *cis* position.

The ${}^{31}P$ -{ ${}^{1}H$ } NMR spectra of the bis(hydrazine) [Ru-(RNHNH₂)₂L₄]²⁺ **4–6** cations appear as a symmetric A₂B₂ multiplet in agreement, in this case, with a *cis* arrangement (geometry II) of the two hydrazine ligands.

Treatment of the η^2 -triflate complexes [Ru(η^2 -OSO₂CF₃)-L₄]⁺CF₃SO₃⁻ with an excess of the disubstituted *N*,*N*-dimethylhydrazine Me₂NNH₂ did not afford the bis(hydrazine) derivative but, surprisingly, a compound separated as a white solid in

Scheme 2 $L = P(OEt)_3$

the case of $L = P(OEt)_3$ and characterised as the new hydrazinetriflate complex [Ru(η¹-OSO₂CF₃)(Me₂NNH₂)L₄]BPh₄ 9 (Scheme 2). The infrared spectrum shows two v(NH) bands at 3302 and 3232 cm⁻¹ and $\delta(NH_2)$ at 1616 cm⁻¹ indicating the presence of the hydrazine ligand. One band at 1325 cm⁻¹ seems to confirm the $\eta^{1}\text{-O}$ co-ordination of the triflate ion. 19 The complex is a diamagnetic, 1:1 electrolyte 18 and the 1H NMR spectrum confirms the presence of both the hydrazine (NH₂ protons at δ 5.12) and the phosphite ligands. Furthermore, the ³¹P-{¹H} NMR spectrum appears as an ABC₂ multiplet which excludes the presence of a bis(hydrazine) complex and suggests a type III geometry with the triflate and the Me₂NNH₂ ligands in a mutually cis arrangement. The exclusive formation of monohydrazine complexes with the disubstituted Me₂NNH₂ ligand may be reasonably attributed to the greater steric hindrance of the latter as compared to monosubstituted hydrazines which prevents the co-ordination of two ligands in a cis position to the RuL₄ fragment.

Benzoylhydrazine also reacts with the η^2 -triflate cations

$$\begin{split} [Ru(\eta^2\text{-}O_2SOCF_3)L_4]^+ & \xrightarrow{PhCONHNH_2} \\ [Ru(\eta^2\text{-}PhCONHNH_2)L_4]^{2^+} \\ & 7.8 \end{split}$$

Scheme 3

$$\begin{split} & [Ru(R^2CN)_2 \{PPh(OEt)_2\}_4]^{2+} \xrightarrow{R^tNHNH_2} \\ & [Ru(R^1NHNH_2)(R^2CN) \{PPh(OEt)_2\}_4]^{2+} \\ & 11,13 \end{split}$$

$$\xrightarrow{\text{R}^{1}\text{NHNH}_{2}} \left[\text{Ru}(\text{R}^{1}\text{NHNH}_{2})_{2} \left\{\text{PPh}(\text{OEt})_{2}\right\}_{4}\right]^{2+}$$

$$R^1 = H$$
, Me, Ph, 4-MeC_6H_4 , $4\text{-O}_2NC_6H_4$
 $R^2 = Me \ 11$, $4\text{-MeC}_6H_4 \ 13$

$$[Ru(R^{2}CN)_{2}\{P(OEt)_{3}\}_{4}]^{2^{+}} \xrightarrow{R^{1}NHNH_{2}}$$

$$[Ru(R^{1}NHNH_{2})(R^{2}CN)\{P(OEt)_{3}\}_{4}]^{2^{+}}$$

$$10,12$$

$$\xrightarrow{R^{1}NHNH_{2}} [Ru(R^{1}NHNH_{2})_{2}\{P(OEt)_{3}\}_{4}]^{2+}$$

$$R^1 = Ph, 4-MeC_6H_4, 4-O_2NC_6H_4$$

 $R^2 = Me 10, 4-MeC_6H_4 12$

$$[Ru(R^{2}CN)_{2}\{P(OEt)_{3}\}_{4}]^{2+} \xrightarrow{R^{1}NHNH_{2}}$$

$$[Ru\{\eta^{2}-NH=C(R^{2})N(R^{1})NH_{2}\}\{P(OEt)_{3}\}_{4}]^{2+}$$
14 15

$$+ \begin{array}{c} [Ru(R^{1}NHNH_{2})_{2}\{P(OEt)_{3}\}_{4}]^{2+} \\ 4 \end{array}$$

$$R^{1} = H, Me$$

 $R^{2} = Me, 4-MeC_{6}H_{4}$

Scheme 4

 $[Ru(\eta^2\text{-OSO}_2CF_3)L_4]^+$ to give the corresponding complexes $[Ru(\eta^2\text{-PhCONHNH}_2)L_4][BPh_4]_2$ 7 and 8 which were isolated and characterised (Scheme 3). The spectroscopic data (Table 1) support the formulation of the compounds and suggest an η^2 co-ordination of the benzoylhydrazine ligand, as shown in the type IV geometry.

New hydrazine complexes of ruthenium of the type [Ru-(R¹NHNH₂)(R²CN)L₄][BPh₄]₂ 10–13 were prepared by treating the bis(nitrile) complexes [Ru(R²CN)₂L₄][BPh₄]₂ with the appropriate hydrazine. The reaction proceeds easily, but depends on several factors, including the nature of the phosphite ligand and of the hydrazine and the reaction conditions, as shown in Scheme 4. The reaction of the bis(nitrile) cations containing $PPh(OEt)_2$, $[Ru(R^2CN)_2\{PPh(OEt)_2\}_4]^{2+}$, with hydrazines proceeds with the substitution of both the R²CN ligands giving a mixture of mono [Ru(R¹NHNH₂)(R²CN)L₄]²⁺ 11,13 and bis(hydrazine) derivatives [Ru(R¹NHNH₂)₂L₄]²⁺ 5. However, also operating at a low [Ru(R²CN)₂L₄]²⁺: R¹NHNH₂ ratio, a mixture containing both the two hydrazine complexes (11 or 13 and 5) was always obtained, the separation of which was rather difficult and laborious. In only three cases, 11a, 11c and 13c, we were able to separate by fractional crystallisation the nitrilehydrazine complexes in pure form.

Also the related bis(nitrile) complexes $[Ru(R^2CN)_2-\{P(OEt)_3\}_4][BPh_4]_2$ containing the $P(OEt)_3$ phosphite ligands react quickly with hydrazines R^1NHNH_2 , but the reaction depends on the nature of the substituent on the same hydrazine molecule. With arylhydrazine it proceeds to give a mixture of mono- and bis-(hydrazine) derivatives $[Ru(R^1NHNH_2)-(R^2CN)L_4]^{2+}$ 10 and 12 and $[Ru(R^1NHNH_2)-L_4]^{2+}$ 4 ($R^1=Ph$, 4-MeC₆H₄ or 4-O₂NC₆H₄), respectively, from which the nitrile-

Scheme 5 $L = P(OEt)_3$; $R^1 = H \text{ or } Me$; $R^2 = 4\text{-MeC}_6H_4 \text{ or } Me$

hydrazine complexes 10 and 12 can be separated by fractional crystallisation and characterised. With N,N-dimethylhydrazine, instead, the reaction is slow and affords only the monosubstituted nitrilehydrazine [Ru(Me₂NNH₂)(4-MeC₆H₄CN)-{P(OEt)₃}₄][BPh₄]₂ 12f derivative which was isolated and characterised. Treatment of the [Ru(R²CN)₂{P(OEt)₃}₄]²⁺ derivatives with the hydrazine NH₂NH₂ and the methylhydrazine MeNHNH₂ does not give the nitrilehydrazine complexes but a mixture containing the known bis(hydrazine) compounds 4 and new complexes which were separated and characterised (see below) as the amidrazone ²⁰ derivatives [Ru{ η ^2-NH=C(R²)-N(R¹)NH₂}L₄][BPh₄]₂ (R¹ = H or Me; R² = 4-MeC₆H₄ or Me) 14 and 15.

The nitrilehydrazine complexes [Ru(R¹NHNH₂)(R²CN)L₄]-[BPh₄]₂ **10–13** are white or pale yellow solids stable in air and are 1:2 electrolytes. ¹⁸ The spectroscopic properties, Table 1, confirm their formulation and suggest that the hydrazine and the nitrile ligands are in a mutually *cis* position as in a type V geometry.

The IR spectra of the amidrazone complexes $[Ru\{\eta^2-NH=C(R^2)N(R^1)NH_2\}L_4][BPh_4]_2$ **14** and **15** (Table 1) display v(NH) and $\delta(NH_2)$ bands at 3399–3307 and 1641–1635 cm⁻¹, respectively, but do not show any v(CN) band of the RCN group. In the ${}^{1}H$ NMR spectrum of the complex $[Ru\{\eta^2-NH=C(4-MeC_6H_4)NHNH_2\}\{P(OEt)_3\}_4][BPh_4]_2$ **14** three slightly broad signals of intensity ratio 1:2:1 are present at δ 7.20, 5.83 and 5.52 (CD_2Cl_2) which were assigned by homodecoupling experiments to the H^1 , H^3 and H^2 protons, respectively, of the amidrazone ligand schematised in geometry **VI**. Good elemental analyses were obtained for the two complexes **14** and **15**, the ${}^{31}P$ NMR spectra of which are consistent with a type **VI** geometry.

The formation of an amidrazone complex from the reaction of a bis(nitrile) derivative with hydrazine NH₂NH₂ or methylhydrazine is not completely unexpected, taking into account that a co-ordinated nitrile can undergo nucleophilic attack by several reagents such as alcohols, amines and carbanions to give iminoethers, amidines and imines, 21-24 respectively. Therefore, taking into account that the first step of the reaction of the bis(nitrile) with hydrazine is probably the substitution of one R²CN ligand to give the [Ru(R¹NHNH₂)(R²CN)L₄]²⁺ cations (see Scheme 4), the formation of the amidrazone complexes can be explained according to a reaction course that involves a nucleophilic attack of one end of R¹NHNH₂ on the cyanide carbon atom of the co-ordinated nitrile followed by a hydrogen shift, giving a five-membered metallacycle (Scheme 5). A similar reaction, giving an amidrazone complex, has been observed by us in iron derivatives 25 and therefore it seems certain that also a hydrazine molecule can behave as a reagent for nucleophilic attack upon co-ordinated nitrile ²⁴ giving the amidrazone complexes. However, this cyclisation reaction is influenced both by the substituent on the hydrazine and by the nature of the ancillary phosphine ligand. In fact, the cyclisation reaction does not take place with any arythydrazine R^1NHNH_2 ($R^1 = Ph$,

Scheme 6 L = P(OEt)₃ 1,4,12,16,18,19, PPh(OEt)₂ 2,5,13,17; R¹ = Ph, 4-MeC₆H₄; R² = 4-MeC₆H₄. (*i*) Pb(O₂CMe)₄, CH₂Cl₂, -30 °C

4-MeC₆H₄ or 4-O₂NC₆H₄) and this absence of reactivity may be reasonably attributed to the steric hindrance of the aryl substituent of the co-ordinated hydrazine. Furthermore, the amidrazone complexes are formed only with the P(OEt)₃ ligand, while no evidence of such a reaction has been observed with the nitrilehydrazine derivatives [Ru(NH₂NH₂)(R²CN)L₄]²⁺ and [Ru(MeNHNH₂)(R²CN)L₄]²⁺ containing PPh(OEt)₂ as ancillary ligands. Therefore, it seems that a nitrile bonded to a Ru(RNHNH₂)L₄ fragment can undergo nucleophilic attack on the cyanide carbon atom only when the phosphines are good π-acceptor ligands such as P(OEt)₃ and when a hydrazine such as NH₂NH₂ or MeNHNH₂ is used. With the less π-acidic PPh(OEt)₂, instead, the cyclisation reaction does not take place, so emphasising the important influence that the ancillary ligands have in the formation of the amidrazone complexes.

Oxidation reactions

Hydrazine complexes of ruthenium(II) react with Pb(O₂CMe)₄ in CH₂Cl₂ at -30 °C to give the corresponding diazene derivatives and/or the acetate [Ru(η²-O₂CMe)L₄]BPh₄ complexes as shown in Scheme 6. Treatment of both mono- (1,2,12,13) and bis-(arylhydrazine) (4,5) complexes with Pb(O₂CMe)₄ at -30 °C results in the formation of the corresponding aryldiazenes which, however, can be isolated as a mixture of products containing also the acetate complex $[Ru(\eta^2-O_2CMe)L_4]$ -BPh₄ 16 and 17 and the starting hydrazine compound. The amount of the three products in the mixture depends on the ratio between the hydrazine complexes and the Pb(O₂CMe)₄ and on the reaction time. In each case a mixture of products was obtained from which the separation of pure samples of aryldiazene was rather difficult. However, although the presence of the diazene complex can easily be detected by the ¹H NMR spectra, in the case of the oxidation of [Ru(PhNHNH₂)₂- $\{P(OEt)_3\}_4$ $[BPh_4]_2$ 4c and $[RuH(PhNHNH_2)\{P(OEt)_3\}_4]BPh_4$ 1c we were able to separate by fractional crystallisation the compounds [Ru(PhN=NH)₂{P(OEt)₃}₄][BPh₄]₂ 19 and [RuH-(PhN=NH){P(OEt)₃}₄]BPh₄ 18 in pure form. Their characterisation is supported by the characteristic high-frequency NH signal at δ 15–14 observed in the ¹H NMR spectra and by the A₂B₂ and ABC₂ multiplets, respectively, in the ³¹P spectra. Furthermore, a comparison of their spectroscopic data with those of the phenyldiazene complexes [Ru(PhN=NH)₂{P(OEt)₃}₄]- $[BPh_4]_2$ or $[RuH(PhN=NH)\{P(OEt)_3\}_4]BPh_4$, previously pre-

pared by us^{2b} from the reaction of the hydride [RuH₂-{P(OEt)₃}₄] with the benzenediazonium salt $PhN_2^+BF_4^-$, further confirms the proposed formulation and emphasises that aryldiazene complexes of ruthenium(II) can be obtained both by the insertion reaction of RN_2^+ into a Ru–H bond and by the oxidation of an arylhydrazine derivative.

Oxidation of hydrazine complexes giving stable diazene derivatives has been reported in a few cases ^{4c,7,27} and often involves dinuclear complexes with a diazene bridging unit. It can be finally noted that the presence of the acetate complex 16 and 17 in the final oxidation product is not surprising as it may be formed by substitution of the diazene ligand with the acetate ion present in solution owing to the use of Pb(O₂CMe)₄ as oxidising agent.

The results obtained on the oxidation of arylhydrazine complexes prompted us to extend these studies to the hydrazine NH₂NH₂ and methylhydrazine MeNHNH₂ derivatives in an attempt to prepare the corresponding 1,2-diazene NH=NH and methyldiazene MeN=NH complexes of RuII. Unfortunately, although the oxidation reaction proceeds easily with Pb(O2-CMe)₄, the only isolated products were the acetate $[Ru(\eta^2 -$ O₂CMe)L₄]BPh₄ complexes in high yield. Probably, also in this case, the oxidation reaction proceeds to give the diazene ligand which is labile in the complexes and can be substituted by the acetate ion giving $[Ru(\eta^2-O_2CMe)L_4]^+$ as the final product. We also attempted to oxidise the hydrazine ligand using other reagents such as O₂, H₂O₂, Bu^tO₂H, but the formation of the diazene complexes was not observed. Equimolar amounts of the hydrazine complex and the oxidizing agent gave no reaction, while the use of an excess of reagent or reflux conditions caused decomposition of the complex. Therefore, it seems that only Pb(O₂CMe)₄ can give selective oxidation of the co-ordinated hydrazine affording the corresponding diazene which is rather labile and can be substituted by the $MeCO_2^-$ ion giving $[Ru(\eta^2 - \eta^2 + \eta^2)]$ O₂CMe)L₄]BPh₄ as final product. The acetate complex has also been obtained in pure form and fully characterised in the case of $[Ru(\eta^2-O_2CMe)\{P(OEt)_3\}_4]BPh_4$ 16 containing $P(OEt)_3$ as supporting ligand and its spectroscopic data are reported in Table 1. Compound 16 is a white solid stable in the air and in solutions of polar organic solvents where it behaves as a 1:1 electrolyte. 18 In the IR spectrum the v(CO) band of the acetate ligand is observed at 1524 cm⁻¹, while in the ¹H NMR spectrum the methyl protons of the $MeCO_2$ group appear as a singlet at δ 1.86. Furthermore, in the ¹³C spectrum the carbonyl carbon atom of the acetate ligand appears as a multiplet at δ 187.8 while the methyl carbon atom appears at δ 24.3. Finally, in the temperature range between +20 and -80 °C the ³¹P spectra appear as a symmetric A2B2 multiplet consistent with the formulation proposed containing a η²-acetate ligand ²⁸ and schematised in geometry VII.

Such a geometry is confirmed by a crystal structure determination of compound 16 the asymmetric unit of which contains a $[Ru(\eta^2-O_2CMe)\{P(OEt)_3\}_4]^+$ cation and a BPh_4^- anion. A perspective view of the cation is shown in Fig. 1, along with the labelling scheme. Relevant geometric parameters are reported in Table 3. The ruthenium is co-ordinated to four phosphorus and two oxygen atoms in a distorted octahedral fashion. The acetate acts as a symmetric bidentate ligand $[Ru-O(13)\ 2.195(6),\ Ru-O(14)\ 2.221(6)\ Å]$ and lies in the plane containing Ru, P(1) and P(4). The line defined by Ru, C(49) and C(50) bisects the angle P(1)–Ru-P(4) [P(1)–Ru-C(49) 132, P(4)–Ru-C(49) 136°]. If the ethoxy groups are neglected, the geometry of the complex closely approximates the $C2_v$ pointgroup symmetry, with the two-fold axis placed along the

Table 2 Crystal data and structure refinement for $[Ru(\eta^2-O_2CMe)-\{P(OEt)_3\}_4]BPh_4$ **16**

Empirical formula	$C_{50}H_{83}BO_{14}P_{4}Ru$
M	1143.99
T/K	293(2)
Crystal system	Monoclinic
Space group	$P2_1/n$
alÅ	13.472(3)
b/Å	24.268(5)
c/Å	18.965(4)
β/°	94.68(5)
U/ų	6180(2)
Z	4
$D_{\rm c}/{\rm Mg~m}^{-3}$	1.224
μ/mm^{-1}	0.412
F(000)	2396
λ/Å	0.710 69
θ Range for data collection/°	3 to 27
Index ranges	$-17 < h < 17, 0 \le k \le 31,$
	$0 \le l \le 24$
Reflections collected	13 871
Independent reflections	13 478
Data, restraints, parameters	13 478, 337, 537
Goodness of fit on F^2	1.025
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0756, $wR2 = 0.1993$
Largest ΔF peak and hole/e \mathring{A}^{-3}	0.672, -0.521

Table 3 Selected bond distances (Å) and angles (°) with estimated standard deviations in parentheses

Ru-P(1) Ru-P(2) Ru-P(3) Ru-P(4) Ru-O(13)	2.216(3) 2.342(3) 2.339(3) 2.222(3) 2.195(6)	Ru-O(14) O(13)-C(49) O(14)-C(49) C(49)-C(50)	2.221(6) 1.277(13) 1.254(12) 1.493(14)
P(1)-Ru-P(2)	96.98(9)	P(3)-Ru-O(13)	86.35(17)
P(1)-Ru-P(3)	95.05(10)	P(3)-Ru-O(14)	83.82(17)
P(1)-Ru-P(4)	91.95(10)	P(4)-Ru-O(13)	165.51(16)
P(1)-Ru-O(13)	102.54(17)	P(4)-Ru-O(14)	106.75(18)
P(1)-Ru-O(14)	161.30(17)	O(13)-Ru-O(14)	58.8(2)
P(2)-Ru-P(3)	167.52(9)	Ru-O(13)-C(49)	92.0(5)
P(2)-Ru-P(4)	90.04(9)	Ru-O(14)-C(49)	91.5(6)
P(2)-Ru-O(13)	87.78(17)	O(13)-C(49)-O(14)	117.8(10)
P(2)-Ru-O(14)	83.71(17)	O(13)-C(49)-C(50)	120.2(9)
P(3)-Ru-P(4)	92.90(9)	O(14)-C(49)-C(50)	121.9(8)

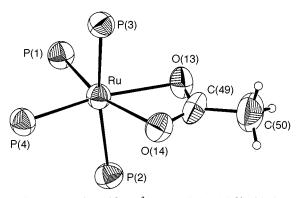


Fig. 1 An ORTEP view of $[Ru(\eta^2-O_2CMe)\{P(OEt)_3\}_4]^+$ with thermal ellipsoids shown at 30% probability level. Ethoxy groups are omitted for clarity

Ru–C(49)–C(50) vector, one mirror plane defined by the acetate, Ru, P(1) and P(4) atoms and the second mirror plane defined by Ru, P(3), P(2), C(49) and C(50). The Ru–P bonds which are *trans* to the acetate are noticeably shorter than those which are *trans* to each other, with average values of 2.219 and 2.341 Å respectively. The angle P(2)–Ru–P(3) deviates by more than 10° from 180° due to the steric hindrance among the phosphite ethoxy groups which results in displacement of P(2) and P(3) towards the acetate. This deformation is also reflected

in the compression of the angles P(3)–Ru–O and P(2)–Ru–O (average = 85.4°) with respect to P(3)–Ru–P and P(2)–Ru–P (average = 93.7°). The steric origin of this deformation is confirmed by comparison of the above average values with those (84.2 and 94.4° respectively) found in the structure of [Ru-{P(OPh)(OMe)₂}₄(O₂CMe)]PF₆,²⁹ where, in addition, the larger repulsion due to the bulkier phosphite substituents increases the angle P(1)–Ru–P(4) involving the groups *trans* to the acetate (98.5 compared with 91.9° found in this work). The geometry of the co-ordinated anion agrees well with the average structure found for bidentate acetates bound to Ru (average values for 20 molecules in the Cambridge Structural Database: C–C 1.50, C–O 1.27, Ru–O 2.19 Å; O–C–O 118.0, O–Ru–O 59.6°).

Acknowledgements

The financial support of Ministero dell' Università e della Ricerca Scientifica e Tecnologica and the Consiglio Nazionale della Ricerche, Rome, is gratefully acknowledged. We thank Dr. G. Balacco (Menarini Ricerche S.p.A.) for use of his NMR software SWANMR and D. Baldan for technical assistance.

References

- 1 H. Zollinger, in Diazo Chemistry II, VCH, Weinheim, 1995; M. Hidai and Y. Mizobe, Chem. Rev., 1995, 95, 1115; R. R. Eady and G. J. Leigh, J. Chem. Soc., Dalton Trans., 1994, 2739; D. Sutton, Chem. Rev., 1993, 93, 935; D. Sellmann, Angew. Chem., Int. Ed. Engl., 1993, 32, 64; H. Kisch and P. Holzmeier, Adv. Organomet. Chem., 1992, 34, 67; B. F. G. Johnson, B. L. Haymore and J. R. Dilworth, in Comprehensive Coordination Chemistry, eds. G. Wilkinson, R. D. Gillard and J. A. McCleverty, Pergamon, Oxford, 1987, vol. 2; R. A. Henderson, G. J. Leigh and C. J. Pickett, Adv. Inorg. Chem. Radiochem., 1983, 27, 197; W. A. Nugent and B. L. Haymore, Coord. Chem. Rev., 1980, 31, 123; F. Bottomley, Q. Rev. Chem. Soc., 1970, 24, 617.
- (a) G. Albertin and E. Bordignon, J. Chem. Soc., Dalton Trans., 1986, 2551; (b) G. Albertin, S. Antoniutti, G. Pelizzi, F. Vitali and E. Bordignon, Inorg. Chem., 1988, 27, 829; (c) G. Albertin, S. Antoniutti and E. Bordignon, J. Chem. Soc., Dalton Trans., 1989, 2353; (d) G. Albertin, P. Amendola, S. Antoniutti and E. Bordignon, J. Chem. Soc., Dalton Trans., 1990, 2979; (e) G. Albertin, S. Antoniutti, A. Bacchi, E. Bordignon, G. Pelizzi and P. Ugo, Inorg. Chem., 1996, 35, 6245.
- 3 (a) J. J. Hough and E. Singleton, J. Chem. Soc., Chem. Commun., 1972, 371: (b) T. V. Ashworth, E. Singleton and J. J. Hough, J. Chem. Soc., Dalton Trans., 1977, 1809; (c) T. V. Ashworth, R. H. Reimann and E. Singleton, J. Chem. Soc., Dalton Trans., 1978, 1036; (d) T. V. Ashworth, M. J. Nolte and E. Singleton, J. Chem. Soc., Dalton Trans., 1978, 1040; (e) T. V. Ashworth, M. J. Nolte, R. H. Reimann and E. Singleton, J. Chem. Soc., Dalton Trans., 1978, 1043.
- 4 (a) D. Sellmann, E. Böhlen, M. Waeber, G. Huttner and L. Zsolnai, Angew. Chem., Int. Ed. Engl., 1985, 24, 981; (b D. Sellmann, H. Kunstmann, F. Knoch and M. Moll, Inorg. Chem., 1988, 27, 4183; (c) D. Sellmann, J. Käppler, M. Moll and F. Knoch, Inorg. Chem., 1993, 32, 960.
- 5 J. Chatt, G. J. Leigh and R. J. Paske, J. Chem. Soc. A, 1969, 854.
- 6 M. Kawano, C. Hoshino and K. Matsumoto, *Inorg. Chem.*, 1992, 31, 5158.
- 7 T.-Y. Cheng, A. Ponce, A. L. Rheingold and G. L. Hillhouse, *Angew. Chem.*, *Int. Ed. Engl.*, 1994, **33**, 657.
- 8 R. Rabinowitz and J. Pellon, J. Org. Chem., 1961, 26, 4623.
- 9 E. Nachbaur and G. Leiseder, Monatsh. Chem., 1971, 102, 1718.
- 10 G. Balacco, J. Chem. Inf. Comput. Sci., 1994, 34, 1235.
- 11 W. G. Peet and D. H. Gerlach, *Inorg. Synth.*, 1974, 15, 38; D. H. Gerlach, W. G. Peet and E. L. Muetterties, *J. Am. Chem. Soc.*, 1972, 94, 4545.
- 12 A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori and M. Camalli, J. Appl. Crystallogr., 1994, 27, 435.
- 13 G. Sheldrick, SHELXL 93, Program for structure refinement, University of Göttingen, 1993.
- 14 M. Nardelli, J. Appl. Crystallogr., 1995, 28, 659.
- 15 L. Zsolnai and H. Pritzkow, ZORTEP, original ORTEP program modified for personal computer, University of Heidelberg, 1994.
- 16 F. H. Allen and O. Kennard, Chem. Des. Automat. News, 1993, 8, 1, 31.

- 17 P. Amendola, S. Antoniutti, G. Albertin and E. Bordignon, *Inorg. Chem.*, 1990, 29, 318.
- 18 W. J. Geary, Coord. Chem. Rev., 1971, 7, 81.
- 19 G. A. Laurance, Chem. Rev., 1986, 86, 17.
- 20 K. M. Watson and D. G. Neilson, in *The Chemistry of Amidines and Imidates*, ed. S. Patai, Wiley, London, 1975, p. 491.
- 21 L. Maresca, G. Natile, F. P. Intini, F. Gasparrini, A. Tiripicchio and M. Tiripicchio-Camellini, J. Am. Chem. Soc., 1986, 108, 1180; F. P. Fanizzi, F. P. Intini and G. Natile, J. Chem. Soc., Dalton Trans., 1989, 947; R. Cini, F. P. Fanizzi, F. P. Intini, L. Maresca and G. Natile, J. Am. Chem. Soc., 1993, 115, 5123; P. Paul and K. Nag, Inorg. Chem., 1987, 26, 1586; D. L. Thorn and J. C. Calabrese, J. Organomet. Chem., 1984, 272, 283.
- 22 C. A. Amodio and K. B. Nolan, *Inorg. Chim. Acta*, 1986, 113, 27;
 A. Syamala and A. R. Chakravarty, *Inorg. Chem.*, 1991, 30, 4699;
 S. G. Feng, P, S. White and J. L. Templeton, *Organometallics*, 1993, 12, 1765;
 D. P. Fairlie and W. G. Jackson, *Inorg. Chem.*, 1990, 29, 140
- 23 T. Uchiyama, K. Takagi, K. Matsumoto, S. Ooi, Y. Nakamura and S. Kawaguchi, *Chem. Lett.*, 1979, 1197; *Bull. Chem. Soc. Jpn.*, 1981,
 54, 1077; Z. Kanda, Y. Nakamura and S. Kawaguchi, *Inorg. Chem.*, 1978, 17, 910; R. A. Michelin, M. Mozzon, P. Berin, R. Bertani, F. Benetollo, G. Bombieri and R. J. Angelici, *Organometallics*, 1994, 13, 1341; P. Braunstein, D. Matt, Y. Dusausoy and J. Fisher,

- Organometallics, 1983, 2, 1410; J. Vicente, M.-T. Chicote, J. Fernandez-Baeza, F. J. Lahoz and J. A. Lopez, *Inorg. Chem.*, 1991, 30, 3617.
- 24 R. A. Michelin, M. Mozzon and R. Bertani, Coord. Chem. Rev., 1996, 147, 299.
- 25 G. Albertin, S. Antoniutti, E. Bordignon and S. Pattaro, following paper.
- 26 C. A. Tolman, *Chem. Rev.*, 1977, 77, 313; M. M. Rahman, H.-Y. Liu, K. Eriks, A. Prock and W. P. Giering, *Organometallics*, 1989, 8, 1.
- 27 M. R. Smith, III, T.-Y. Cheng and G. L. Hillhouse, J. Am. Chem. Soc., 1993, 115, 8638; D. Sellmann, W. Soglowek, F. Knoch and M. Moll, Angew. Chem., Int. Ed. Engl., 1989, 28, 1271; M. R. Smith, III, R. L. Keys, G. L. Hillhouse and A. L. Rheingold, J. Am. Chem. Soc., 1989, 111, 8312; D. Sellmann and K. Jödden, Angew. Chem., Int. Ed. Engl., 1977, 16, 464.
- 28 S. D. Robinson and M. F. Uttley, *J. Chem. Soc.*, *Dalton Trans.*, 1973, 1913; R. J. Young and G. Wilkinson, *J. Chem. Soc.*, *Dalton Trans.*, 1976, 719.
- 29 T. V. Ashworth, M. J. Nolte and E. Singleton, *J. Chem. Soc.*, *Dalton Trans.*, 1975, 2556.

Received 21st April 1997; Paper 7/02712E